“Pardon, comment dit-on en Francais?” – I tried hard to learn French to keep up with the bilingual son of close friends, but failed miserably. DuoLingo and sub-titled TV gave me the edge early on, but even at the tender age of 2.5 years, he is already overtaking me. Of course, in my profession, this makes me wonder how the brain manages this remarkable feat of mastering several languages so rapidly at his age – and offer some explanatory solace for my failings.
A popular belief is that children’s brains are more plastic, which explains their greater ease of language learning. However, studies in developmental cognitive neuroscience suggest that reality is a bit more complicated than that. Research shows that the brain expects particular stimuli during important periods of plasticity. During these periods, the brain soaks up particular bits of information like a sponge. However, the brain also has to keep this plasticity check. Otherwise, it would be like building a tower with wet concrete. The plasticity of the wet concrete is useful at first to shape the structure. But one has to wait until is hardens to further build on it to avoid ending up with a pile of sludge. Similarly, once acquired, representations in the brain have to set and might be difficult to alter later on.
A recent study by Pierce and colleagues provides an excellent example of this type of research. They recruited three groups of school-age children to their study: a group of monolingual French children, a group of bilingual children who spoke Chinese and learned French before their third birthday, and a group of Chinese children who were adopted by French-speaking parents before their third birthday. Importantly, the last group consisted of children who were exposed to Chinese early on, but did not speak Chinese anymore after adoption. In the experiment, the children performed a test of verbal working memory. For this task, children were presented with a sequence of French pseudowords*. When prompted, the child had to recall the last pseudoword that he or she had just seen (0-back), the one before that (1-back), or the one two pseudowords before (2-back) while an MRI machine measured the oxygenation of blood in their brain.
Response times and accuracy were the same in all groups, but the brain responses showed interesting differences. Monolingual French children showed increased blood oxygenation in regions that are typically associated with verbal working memory tasks like this. In contrast, the bilingual Chinese group showed higher activation in areas involved in frontal and parietal areas involved in cognitive control. Crucially, the third group of children who were exposed to Chinese early, but only spoke French, displayed activations that were more similar to the bilingual group than the monolingual group. So, despite relatively early acquisition of the second language and only speaking the second language, the early exposure resulted in a similar brain response as in bilingual children.
Previous studies also found higher activation in executive areas in bilingual adults. It was thought that this arises because both languages are automatically activated. The bilingual constantly suppresses the language that is not needed in the current situation. This explanation was supported by higher performance of bilinguals on general tasks that require inhibition. However, these new developmental findings could mean that the recruitment of executive areas is not driven by bilingualism per se, but perhaps by differences in early development that persists even when only one language is used later in life.
Importantly, the study does not suggest that there is any advantage or disadvantage in being exposed to a different language early in life. After all, the performance of all children in terms of accuracy and reaction time was statistically indistinguishable. However, the results provide an interesting insight into cognitive development beyond the early-is-better mantra so frequently repeated in pop science publications.
Footnote:
* Pseudowords are pronouncable sequences of letters that resemble words that could be found in a dictionary of a language, but do not have any meaning. An example of a pseudoword in English is ‘shum’ or ‘dake’
Reference:
Pierce, L., Chen, J.-K., Delcenserie, A., Genesee, F. & Klein, D. (2015): “Past experience shapes ongoing neural patterns for language”. Nature Communications 6 http://www.nature.com/ncomms/2015/151201/ncomms10073/full/ncomms10073.html
Image credit:
Pieter Brueghel the Elder (1526/1530–1569): The Tower of Babel [retrieved from commons.wikimedia.org]
Commentaires